(i) The function $\mathrm{f}(x)$ is defined by

$$
\mathrm{f}(x)=\frac{1-x}{1+x}, x \neq-1 .
$$

Show that $\mathrm{f}(\mathrm{f}(x))=x$.
Hence write down $\mathrm{f}^{-1}(x)$.
(ii) The function $\mathrm{g}(x)$ is defined for all real x by

$$
\mathrm{g}(x)=\frac{1-x^{2}}{1+x^{2}} .
$$

Prove that $\mathrm{g}(x)$ is even. Interpret this result in terms of the graph of $y=\mathrm{g}(x)$.

2 Fig. 9 shows the curve $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=\left(\mathrm{e}^{x}-2\right)^{2}-1, x \in \mathbb{R} .
$$

The curve crosses the x-axis at O and P , and has a turning point at Q .

Fig. 9
(i) Find the exact x-coordinate of P .
(ii) Show that the x-coordinate of Q is $\ln 2$ and find its y-coordinate.
(iii) Find the exact area of the region enclosed by the curve and the x-axis.

The domain of $\mathrm{f}(x)$ is now restricted to $x \geqslant \ln 2$.
(iv) Find the inverse function $\mathrm{f}^{-1}(x)$. Write down its domain and range, and sketch its graph on the copy of Fig. 9 .

3 Fig. 7 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=1+2 \arctan x, x \in \mathbb{R}$. The scales on the x - and y-axes are the same.

Fig. 7
(i) Find the range of f , giving your answer in terms of π.
(ii) Find $\mathrm{f}^{-1}(x)$, and add a sketch of the curve $y=\mathrm{f}^{-1}(x)$ to the copy of Fig. 7.

4 Given that $\mathrm{f}(x)=2 \ln x$ and $\mathrm{g}(x)=\mathrm{e}^{x}$, find the composite function $\mathrm{gf}(x)$, expressing your answer as simply as possible.

5 Write down the conditions for $\mathrm{f}(x)$ to be an odd function and for $\mathrm{g}(x)$ to be an even function. Hence prove that, if $\mathrm{f}(x)$ is odd and $\mathrm{g}(x)$ is even, then the composite function $\mathrm{gf}(x)$ is even.

6 The function $\mathrm{f}(x)$ is defined by

$$
\mathrm{f}(x)=1+2 \sin 3 x, \quad-\frac{\pi}{6} \leqslant x \leqslant \frac{\pi}{6} .
$$

You are given that this function has an inverse, $\mathrm{f}^{-1}(x)$.
Find $\mathrm{f}^{-1}(x)$ and its domain.

7 Given that $\mathrm{f}(x)=\frac{1}{2} \ln (x-1)$ and $\mathrm{g}(x)=1+\mathrm{e}^{2 x}$, show that $\mathrm{g}(x)$ is the inverse of $\mathrm{f}(x)$.

8 Sketch the curve $y=2 \arccos x$ for $-1 \leqslant x \leqslant 1$.

